От чего зависит коэффициент трения качения. Сопротивление качению и промышленные колёса. Анализ полученной формулы для силы fr

Цель работы :познакомиться с явлением трения качения, определить коэффициент трения качения четырехколесной тележки..

Оборудование : тележка как модель вагона, горизонтальная рельсовая колея с набором фотоэлементов, секундомер, набор грузов.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Сила трения качения – это касательная к поверхности контакта сила сопротивления движению, возникающая при качении цилиндрических тел.

При качении колеса по рельсу происходит деформация как колеса, так и рельса. Вследствие неидеальной упругости материала в зоне контакта происходят процессы пластической деформации микробугорков, поверхностных слоев колеса и рельса. Из-за остаточной деформации уровень рельса за колесом оказывается ниже, чем перед колесом и колесо при движении постоянно закатывается на бугорок. В наружной части зоны контакта происходит частичное проскальзывание колеса по рельсу. Во всех этих процессах совершается работа силой трения качения. Работа этой силы приводит к рассеянию механической энергии, переходу ее в теплоту, поэтому сила трения качения является диссипативной силой.

В центральной части зоны контакта возникает еще одна касательная сила – это сила трения покоя или сила сцепления материала колеса и рельса. Для ведущего колеса локомотива сила сцепления является силой тяги, а при торможении колодочным тормозом – силой торможения. Так как в центре зоны контакта перемещения колеса относительно рельса отсутствует, то работа силой сцепления не совершается.

Распределение давления на колесо со стороны рельса оказывается несимметричным. Спереди давление больше, а сзади меньше (рис.1). Поэтому точка приложения равнодействующей силы на колесо смещена вперед на некоторое небольшое расстояние b относительно оси. Представим силу воздействия рельса на колесо в виде двух составляющих. Одна направлена по касательной к зоне контакта, она является силой сцепления F сцепл . Другая составляющая Q направлена по нормали к поверхности контакта и проходит через ось колеса.

Разложим, в свою очередь, силу нормального давления Q на две составляющие: силу N , которая перпендикулярна рельсу и компенсирует силу тяжести, и силу F кач , которая направлена вдоль рельса против движения. Эта сила препятствует движению колеса и является силой трения качения. Сила давления Q вращающего момента сил не создает. Поэтому моменты составляющих ее сил относительно оси колеса должны компенсировать друг друга: . Откуда . Сила трения качения пропорциональна силе N , действующей на колесо перпендикулярно рельсу:

. (1)

Здесь коэффициент трения качения. Он зависит от упругости материала рельса и колеса, состояния поверхности, размеров колеса. Как видно, чем больше колесо, тем сила трения качения меньше. Если бы за колесом форма рельса восстанавливалась, то эпюра давления была бы симметрична, и трение качения отсутствовало. При качении стального колеса по стальному рельсу коэффициент трения качения достаточно мал: 0,003–0,005, в сотни раз меньше коэффициента трения скольжения. Поэтому катить легче, чем тащить.

Экспериментальное определение коэффициента трения качения производится на лабораторной установке. Пусть тележка, являющаяся моделью вагона, катится по горизонтальным рельсам. На нее со стороны рельсов действуют горизонтальные силы трения качения и сцепления (рис. 2). Запишем уравнение второго закона Ньютона для замедленного движения тележки массой m в проекции на направление ускорения:

. (2)

Поскольку масса колес составляет значительную часть от массы тележки, то нельзя не учесть вращательного движения колес. Представим качение колес как сумму двух движений: поступательного движения вместе с тележкой и вращательного движения относительно осей колесных пар. Поступательное движение колес объединим с поступательным движением тележки с их общей массой m в уравнении (1). Вращательное движение колес происходит под действием только момента сил сцепления F сц R . Уравнение основного закона динамики вращательного движения (произведение момента инерции всех колес на угловое ускорение равно моменту силы) имеет вид

. (3)

При отсутствии проскальзывания колеса относительно рельса скорость точки контакта равна нулю. Значит, скорости поступательного и вращательного движений равны и противоположны: . Если это равенство продифференцировать, то получим соотношение между поступательным ускорением тележки и угловым ускорениями колеса: . Тогда уравнение (3) примет вид . Сложим это уравнение с уравнением (2) для исключения неизвестной силы сцепления. В результате получим

. (4)

Полученное уравнение совпадает с уравнением второго закона Ньютона для поступательного движения тележки с эффективной массой: , в которой уже учтен вклад инертности вращения колес в инертность тележки. В технической литературе уравнение вращательного движения колес (3) не применяют, а учитывают вращение колес введением эффективной массы. Например, для груженого вагона коэффициент инертности γ равен 1,05, а для порожнего вагона влияние инертности колес больше: γ = 1,10.

Подставив силу трения качения в уравнение (4), получим для коэффициента трения качения расчетную формулу

. (5)



Для определения коэффициента трения качения по формуле (5) следует экспериментально измерить ускорение тележки. Для этого толкнем тележку с некоторой скоростью V 0 по горизонтальным рельсам. Уравнение кинематики равнозамедленного движения имеет вид .

Путь S и время движения t можно измерить, но неизвестна начальная скорость движения V 0 . Однако установка (рис. 3) имеет семь секундомеров, измеряющих время движения от стартового фотоэлемента до следующих семи фотоэлементов. Это позволяет либо составить систему семи уравнений и исключить из них начальную скорость, либо решить эти уравнения графически. Для графического решения перепишем уравнение равнозамедленного движения, поделив его на время: .

Средняя скорость движения до каждого фотоэлемента линейно зависит от времени движения до фотоэлементов. Поэтому график зависимости <V> (t ) является прямой линией с угловым коэффициентом, равным половине ускорения (рис.4)

. (6)

Момент инерции четырех колес тележки, которые имеют форму цилиндров радиуса R при общей их массе m кол, можно определить по формуле . Тогда поправка на инертность вращения колес примет вид .

ВЫПОЛНЕНИЕ РАБОТЫ

1. Определить взвешиванием массу тележки вместе с некоторым грузом. Измерить радиус колес по поверхности катания. Записать результаты измерений в табл. 1.

Таблица 1 Таблица 2

S, м t, с , м/с
0,070
0,140
0,210
0,280
0,350
0,420
0,490

2. Проверить горизонтальность рельсов. Поставить тележку у начала рельсов так, чтобы стержень тележки был перед отверстиями стартового фотоэлемента. Включить блок питания в сеть 220 В.

3. Толкнуть тележку вдоль рельсов так, чтобы она доехала до ловушки и упала в нее. Каждый секундомер покажет время движения тележки от стартового фотоэлемента до его фотоэлемента. Повторить опыт несколько раз. Записать показания семи секундомеров в одном из опытов в табл. 2.

4. Произвести расчеты. Определить среднюю скорость движения тележки на пути от старта до каждого фотоэлемента

5. Построить график зависимости средней скорости движения до каждого фотоэлемента от времени движения. Размер графика не менее половины страницы. На осях координат указать равномерный масштаб. Около точек провести прямую линию.

6. Определить среднее значение ускорения. Для этого на экспериментальной линии как на гипотенузе построить прямоугольный треугольник. По формуле (6) найти среднее значение ускорения.

7. Рассчитать поправку на инертность вращения колес, считая их однородными дисками . Определить по формуле (5) среднее значение коэффициента трения качения <μ>.

8. Оценить погрешность измерения графическим способом

. (7)

Записать результат μ = <μ>± δμ, Р = 90%.

Сделать выводы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Объяснить причину возникновения силы трения качения. Какие факторы влияют на величину силы трения качения?

2. Записать закон для силы трения качения. От чего зависит коэффициент трения качения?

3. Записать уравнения динамики поступательного движения тележки по горизонтальным рельсам и вращательного движения колес. Получить уравнение движения тележки с эффективной массой.

4. Вывести формулу для определения коэффициента трения качения.

5. Объяснить суть графического метода определения ускорения тележки при качении по рельсам. Вывести формулу ускорения.

6. Объяснить влияние вращения колес на инертность тележки.


Работа 17-б


Похожая информация.


Тре́ние каче́ния - сопротивление движению, возникающее при перекатывании тел друг по другу т.е. сопротивление качению одного тела (катка) по поверхности другого. Причина трения качения - деформация катка и опорной поверхности. Проявляется, например, между элементами подшипников качения , между автомобильной шиной колеса автомобиля и дорожным полотном. В большинстве случаев величина трения качения гораздо меньше величины трения скольжения при прочих равных условиях, и потому качение является распространенным видом движения в технике. Трение качения возникает на границе двух тел, и поэтому оно классифицируется как вид внешнего трения.

Энциклопедичный YouTube

  • 1 / 5

    Пусть на тело вращения, располагающееся на опоре, действуют

    Если векторная сумма этих сил равна нулю

    N → + P → + R → p = 0 , {\displaystyle {\vec {N}}+{\vec {P}}+{\vec {R}}_{p}=0,}

    то ось симметрии тела движется равномерно и прямолинейно или остаётся неподвижной (см. рис. 1) . Вектор F → t = − P → {\displaystyle {\vec {F}}_{t}=-{\vec {P}}} определяет силу трения качения, противодействующую движению. Это означает, что прижимающая сила уравновешивается вертикальной составляющей реакции опоры, а внешняя сила уравновешивается горизонтальной составляющей реакции опоры.

    Равномерное качение означает также, что сумма моментов сил относительно произвольной точки равна нулю. Из равновесия относительно оси вращения моментов сил, изображённых на рис. 2 и 3 , следует:

    F t ⋅ R = N ⋅ f , {\displaystyle F_{t}\cdot R=N\cdot f,} F t = f R ⋅ N , {\displaystyle F_{t}={\frac {f}{R}}\cdot N,}

    Эта зависимость подтверждается экспериментально. Для малой скорости качения сила трения качения не зависит от величины этой скорости. Когда скорость качения достигает значений, сопоставимых со значениями скорости деформации в материале опоры, трение качения резко возрастает и даже может превысить трение скольжения при аналогичных условиях.

    Момент сил трения качения

    Определим для подвижного цилиндра момент, тормозящий вращательное движение тела. Рассматривая данный момент относительно оси вращающегося колеса (например, колеса автомобиля), находим, что он равен произведению тормозного усилия на оси на радиус колеса. Относительно точки контакта движущегося тела с землей момент будет равен произведению внешней силы, уравновешивающей силу трения, на радиус колеса (рис. 2) :

    M t = F t ⋅ R = P ⋅ R {\displaystyle M_{t}=F_{t}\cdot R=P\cdot R} .

    С другой стороны, момент трения равен моменту прижимающей силы N → {\displaystyle {\vec {N}}} на плечо, длина которого равна коэффициенту трения качения f :

    M t = f ⋅ N , {\displaystyle M_{t}=f\cdot N,}

    Коэффициент трения качения

    Из выписанного выше уравнения следует, что коэффициент трения качения может быть определен как отношение момента трения качения M t {\displaystyle M_{t}} к прижимной силе N :

    f = M t N . {\displaystyle f={\frac {M_{t}}{N}}.}

    Графическая интерпретация коэффициента трения качения f дана на рисунке 3 и 4 .

    Коэффициент трения качения имеет следующие физические интерпретации:

    • Если тело находится в покое и внешняя сила отсутствует, то реакция опоры лежит на той же линии, что и прижимающая сила. Когда тело катится, то из условия равновесия следует, что нормальная составляющая реакции опоры параллельна и противонаправлена прижимающей силе, но не лежит с ней на одной линии. Коэффициент трения качения равен расстоянию между прямыми, вдоль которых действуют прижимающая сила и нормальная составляющая реакции опоры (рис. 4 ).

    Ориентировочные значения коэффициента трения для различных пар качения

    Катящееся тело Подстилающая поверхность Коэффициент трения в мм
    мягкое дерево мягкое дерево 1,5
    мягкое дерево сталь 0,8
    твердое дерево твердое дерево 0,8
    эбонит бетон 10-20
    эбонит сталь 7,7
    резина бетон 15-35
    закалённая сталь закалённая сталь 0,01
    полимер сталь 2
    сталь асфальт 6
    сталь тротуарная плитка 1,5
    сталь сталь 0,5
    железо мягкое дерево 5,6
    железо гранит 2,1
    железо железо 0,51
    чугунное литьё чугунное литьё 0,8

    Если вы попробуете сдвинуть тяжелый шкаф, полный вещей, то как-то сразу станет понятно, что не так все просто, и что-то явно мешает благому делу наведения порядка.

    • И мешать движению будет не что иное, как работа силы трения , которую изучают в курсе физики седьмого класса.

    С трением мы сталкиваемся на каждом шагу. В прямом смысле этого слова. Вернее было бы сказать, что без трения мы и шагу ступить не можем, так как именно силы трения удерживают наши ноги на поверхности.

    Любой из нас знает, что такое ходить по очень скользкой поверхности - по льду, если этот процесс вообще можно назвать ходьбой. То есть, мы сразу видим очевидные плюсы силы трения. Однако, прежде чем говорить о пользе или вреде сил трения, рассмотрим для, начала, что такое сила трения в физике.

    Сила трения в физике и ее виды

    Взаимодействие, которое возникает в месте соприкосновения двух тел и препятствует их относительному движению, называют трением. А силу, которая характеризует это взаимодействие, называют силой трения.

    • Различают три вида трения: трение скольжения, трение покоя и трение качения.

    Трение покоя

    В нашем случае, когда мы пытались сдвинуть шкаф с места, мы пыхтели, толкали, краснели, но не сдвинули шкаф ни на дюйм. Что удерживает шкаф на месте? Сила трения покоя. Теперь другой пример: если мы положим руку на тетрадь и будем двигать ее по столу, то тетрадь будет двигаться вместе с нашей рукой, удерживаемая все той же силой трения покоя.

    Трение покоя удерживает вбитые в стену гвозди, мешает самопроизвольно развязываться шнуркам, а также держит на месте наш шкаф, чтобы мы, случайно опершись на него плечом, не задавили любимого кота, который вдруг улегся подремать в тишине и покое между шкафом и стеной.

    Трение скольжения

    Вернемся к нашему пресловутому шкафу. Мы, наконец, сообразили, что сдвинуть его в одиночку нам не удастся и позвали на помощь соседа. В конце концов, исцарапав весь пол, вспотев, напугав кота, но, так и не выгрузив вещи из шкафа, мы передвинули его в другой угол.

    Что мы обнаружили, кроме клубов пыли и не обклеенного обоями куска стены? Что, когда мы приложили силу, превышающую силу трения покоя, шкаф не просто сдвинулся с места, но и (с нашей помощью, естественно) продолжил двигаться дальше, до нужного нам места. И усилия, которые приходилось затрачивать на его передвижение, были примерно одинаковы на всем протяжении пути.

    • В данном случае нам мешала сила трения скольжения . Сила трения скольжения, как и сила трения покоя, направлена в сторону, противоположную приложенному воздействию.

    Трение качения

    В случае, когда тело не скользит по поверхности, а катится, то, возникающее в месте контакта трение, называют трением качения. Катящееся колесо немного вдавливается в дорогу, и перед ним образуется небольшой бугорок, который приходится преодолевать. Именно этим и обусловлено трение качения.

    Чем тверже дорога, тем меньше трение качения. Именно поэтому ехать по шоссе намного легче, чем по песку. Трение качения в подавляющем большинстве случаев ощутимо меньше трения скольжения. Именно поэтому повсеместно применяют колеса, подшипники и так далее.

    Причины возникновения сил трения

    Первая - это шероховатость поверхности. Это хорошо понятно на примере досок пола или поверхности Земли. В случае же более гладких поверхностей, например, льда или покрытой металлическими листами крыши, шероховатости почти не видны, но это не значит, что их нет. Эти шероховатости и неровности цепляются друг за друга и мешают движению.

    Вторая причина - это межмолекулярное притяжение, которое действует в местах контакта трущихся тел. Однако, вторая причина проявляется, в основном, лишь в случае очень хорошо отполированных тел. В основном же, мы имеем дело с первой причиной возникновения сил трения. И в таком случае, чтобы уменьшить силу трения, часто применяют смазку.

    • Слой смазки, чаще всего жидкий, разъединяет трущиеся поверхности, и трутся между собой слои жидкости, сила трения в которых в разы меньше.

    Сочинение на тему «Сила трения»

    В курсе физики седьмого класса школьникам дают задание написать сочинение на тему «Сила трения». Примером сочинения на эту тему может служить примерно такая фантазия:

    «Допустим, решили мы на каникулах съездить к бабушке в гости на поезде. И не в курсе того, что как раз в это время вдруг, ни с того ни с сего, пропала сила трения. Проснулись, встаем с кровати и падаем, так как силы трения между полом и ногами нет.

    Начинаем обуваться, и не можем завязать шнурки, которые не держатся из-за отсутствия силы трения. С лестницей вообще туго, лифт не работает - он уже давно лежит в подвале. Пересчитав копчиком абсолютно все ступени и доползя как-то до остановки, обнаруживаем новую беду: ни один автобус не остановился на остановке.

    Чудом сели в поезд, думаем, какая красота - тут хорошо, топлива уходит меньше, так как потери на трение сведены к нулю, быстрее доедем. Но вот в чём беда: силы трения между колёсами и рельсами нету, а, значит, и оттолкнуться поезду не от чего! Так что, в общем, как-то и не судьба съездить к бабушке без силы трения.»

    Польза и вред силы трения

    Конечно же, это фантазия, и она полна лирических упрощений. В жизни все немного по-другому. Но, по сути, несмотря на то, что есть очевидные минусы силы трения, которые создают для нас ряд сложностей в жизни, очевидно, что без существования сил трения, проблем было бы куда как побольше. Так что нужно говорить, как о вреде сил трения, так и о пользе все тех же сил трения.

    Примерами полезных сторон сил трения можно назвать то, что мы можем ходить по земле, что наша одежда не разваливается, так как нитки в ткани удерживаются благодаря все тем же силам трения, что насыпав на обледеневшую дорогу песок, мы улучшаем сцепление с дорогой, дабы избежать аварии.

    Ну а вредом силы трения является проблема перемещения больших грузов, проблема изнашивания трущихся поверхностей, а также невозможность создания вечного двигателя, так как из-за трения любое движение рано или поздно останавливается, требуя постоянного стороннего воздействия.

    Люди научились приспосабливаться и уменьшать, либо увеличивать силы трения , в зависимости от необходимости. Это и колеса, и смазка, и заточка, и многое другое. Примеров масса, и очевидно, что нельзя однозначно сказать: трение - это хорошо или плохо. Но оно есть, и наша задача - научиться использовать его на пользу человека.

    Нужна помощь в учебе?

    Предыдущая тема: Связь между силой тяжести и массой тела: динамометр.
    Следующая тема:   Трение в природе, быту и технике: еще больше ПРИМЕРОВ

    Трения возникает при непосредственном соприкосновении тел, препятствуя их относительному движению, и всегда направлена вдоль поверхности соприкосновения.

    Силы трения имеют электромагнитную природу, как и силы упругости. Трение между поверхностями двух твердых тел называют сухим трением. Трение между твердым телом и жидкой или газообразной средой называют вязким трением.

    Различают трение покоя , трение скольжения и трения качения .

    Трение покоя - возникает не только при скольжении одной поверхности по другой, но и при попытках вызвать это скольжение. Трение покоя удерживает от соскальзывания находящиеся на движущейся ленте транспортера грузы, удерживает вбитые в доску гвозди и т. д.

    Силой трения покоя называют силу, препятствующую возникновению движения одного тела относительно другого, всегда направленную против силы, приложенной извне параллельно поверхности соприкосновения, стремящейся сдвинуть предмет с места.

    Чем больше сила, стремящаяся сдвинуть тело с места, тем больше сила трения покоя. Однако, для любых двух соприкасающихся тел она имеет некоторое максимальное значение (F тр.п.) max , больше которого она быть не может, и которая не зависит от площади соприкосновения поверхностей:

    (F тр.п.) max = μ п N,

    где μ п - коэффициент трения покоя, N - сила реакции опоры.

    Максимальная сила трения покоя зависит от материалов тел и от качества обработки соприкасающихся поверхностей.

    Трение скольжения . приложим к телу силу, превышающую максимальную силу трения покоя - тело сдвинется с места и начнет двигаться. Трение покоя сменится трением скольжения.

    Сила трения скольжения также пропорциональна силе нормального давления и силе реакции опоры:

    F тр = μN.

    Трение качения . Если тело не скользит по поверхности другого тела, а, подобно колесу, катится, то трение, возникающее в месте их контакта, называют трением качения. Когда колесо катится по полотну дороги, оно все время вдавливается в него, поэтому перед ним постоянно оказывается бугорок, которых необходимо преодолеть. Этим и обусловлено трение качения. Трение качения тем меньше, чем тверже дорога.

    Сила трения качения также пропорциональна силе реакции опоры:

    F тр.кач = μ кач N,

    где μ кач - коэффициент трения качения.

    Поскольку μ кач << μ , при одинаковых нагрузках сила трения качения намного меньше силы трения скольжения.

    Причинами возникновения силы трения являются шероховатость поверхностей соприкасающихся тел и межмолекулярное притяжение в местах контакта трущихся тел. В первом случае поверхности, кажущиеся гладкими, на самом деле имеют микроскопические неровности, которые при скольжении зацепляются друг за друга и мешают движению. Во втором случае притяжение проявляется даже при хорошо отполированных поверхностях.

    На движущееся в жидкости или газе твердое тело действует сила сопротивления среды , направленная против скорости тела относительно среды и тормозящая движение.

    Сила сопротивления среды появляется только во время движения тела в этой среде. Здесь нет ничего подобного силе трения покоя. Наоборот, предметы в воде сдвигать намного легче, чем на твердой поверхности.

    Название определяет сущность.

    Японская пословица

    Сила трения качения, как показывает многовековой человеческий опыт, примерно на порядок меньше силы трения скольжения. Несмотря на это идея подшипника качения сформулирована Вирло только в 1772 году.

    Рассмотрим основные понятия трения качения. Когда колесо катится по неподвижному основанию и при повороте на угол его ось (точка 0) сме-щается на величину , то такое движение называется чистым качением без проскальзывания. Если колесо (Рис.51) нагружено силой N, то чтобы заставить его двигаться необходимо приложить вращающий момент. Это можно выполнить, приложив силу F к его центру. При этом момент силы F относительно точки О 1 будет равен моменту сопротивления качению.

    Рис.51. Схема чистого качения

    Если колесо (Рис.51) нагружено силой N, то чтобы заставить его двигаться необходимо приложить вращающий момент. Это можно выполнить, приложив силу F к его центру. При этом момент силы F относительно точки О 1 будет равен моменту сопротивления качению.

    Коэффициент трения качения - это отношение движущего момента к нормальной нагрузке. Эта величина имеет размерность длины.

    Безразмерная характеристика - коэффициент сопротивления качению равен отношению работы движущей силы F на единичном пути к нормальной нагрузке:

    где: А - работа движущей силы;

    Длина единичного пути;

    М - момент движущей силы;

    Угол поворота колеса, соответствующий пути.

    Таким образом, выражение для коэффициента трения при качении и скольжении различны.

    Следует отметить, что сцепляемость катящегося тела с дорожкой не должна превышать силы трения, иначе качение перейдёт в скольжение.

    Рассмотрим движение шарика по дорожке подшипника качения (Рис. 52а). С дорожкой контактирует как наибольшая диаметральная окружность, так и меньшие окружности параллельных сечений. Путь, пройденный точкой на окружностях различного радиуса, различен, то есть имеет место проскаль-зывание.

    При качении шарика или ролика по плоскости (или внутреннему цилиндру) касание происходит в точке или по линии только теоретически. В реальных узлах трения под действием рабочих нагрузок происходит деформа-ция контактной зоны. При этом шарик контактирует по некоторому кругу, а ролик - по прямоугольнику. В обоих случаях качение сопровождается возник-новением и разрушением фрикционных связей как и при трении скольжения.

    Ролик, в связи с деформацией дорожки качения, проходит путь меньший, чем длина его окружности. Наглядно это заметно при качении жесткого стального цилиндра по плоской эластичной поверхности резины (Рис. 52б). Если нагрузка вызывает только упругие деформации e, то след качения восстанавливается. При пластических деформациях дорожка качения остаётся.


    Рис.52. Качение: а - шарика по дорожке, б - цилиндра по упругому основанию

    В связи с неравенством путей (по окружности ролика и по опорной поверхности) имеет место проскальзывание.

    В настоящее время установлено, что снижение трения скольжения (от проскальзывания) путём повышения качества обработки контактных поверхностей или применения смазок почти не происходит. Отсюда следует, что сила трения качения обусловлена в большей степени не проскальзыванием, а рассеянием энергии при деформации. Так как деформация в основном упругая, то потери на трение качения - это результат упругого гистерезиса.

    Упругий гистерезис заключается в зависимости деформации при одних и тех же нагрузках от последовательности (кратности) воздействий, то есть от предыстории нагружения. Часть энергии запасается в деформируемом теле и при превышении некоторого энергетического порога происходит отделение частицы износа - разрушение. Наибольшие потери имеют место при качении по вязкоупругому основанию (полимерам, резине), наименьшее - по высокомодульному металлу (стальные рельсы).

    Эмпирическая формула для определения силы трения качения имеет вид:

    где: D - диаметр тела качения.

    Анализ формулы показывает, что сила трения увеличивается:

    С ростом нормальной нагрузки;

    С уменьшением размеров тела качения.

    При увеличении скорости качения сила трения изменяется мало, но увеличивается износ. Увеличение скорости движения за счёт диаметра колеса уменьшает силу трения качения.