Плазменные двигатели: миф и реальность. Плазменный ракетный двигатель Плазменные двигатели для космических аппаратов

Наверняка каждый человек согласится с тем, что космос манит. И он уже исследуется! Вот только очень медленно. Потому что крайне сложно создать космический аппарат, который мог бы быстро преодолеть внушительные, исчисляемые сотнями тысяч километров расстояния.

Вся суть в топливе! Оно не бесконечное. Нужны современные агрегаты с другим принципом работы, и помощнее. Да, есть ядерные ракетные двигатели (ЯРД). Но их максимальный предел - 100 км/сек. К тому же их рабочее тело нагревается в ядерном реакторе.

А вот плазменные двигатели - это перспектива, которая заслуживает внимания.

Краткий экскурс в физику

Для начала стоит отметить, что любому ракетному двигателю свойственно выбрасывание из сопла слабо ионизированной плазмы. Вне зависимости от его вида. Но «классическими», настоящими плазменными двигателями являются те, которые ускоряют плазму благодаря электромагнитным силам, оказывающим воздействие на заряженные частицы.

Процесс сложный. Любое электрическое поле, которое ускоряет в плазме заряды, придаёт электронам и ионам равные по модулю суммарные импульсы. Вдаваться в эти подробности необязательно. Достаточно знать, что импульс - это величина измерения механического движения тела.

Поскольку плазма является электрически нейтральной, то сумма всех положительных зарядов равна по модулю сумме отрицательных. Есть определённый отрезок времени - он бесконечно мал. За эти считаные мгновения все положительные ионы получают мощный импульс. Такой же направляется в обратную сторону - к отрицательным. Что получается? Суммарный импульс в итоге равен нулю. А значит, тяги не возникает.

Такой вывод: для электрического «разгона» плазмы необходимо разделение разноименных зарядов. Положительные будут разгоняться тогда, когда отрицательные выведены из зоны действия. Сделать это сложно, так как кулоновские силы притяжения восстанавливают электрическое равновесие, возникая между плазменными разноимённо заряженными сгустками.

И как же удалось воплотить этот принцип работы в плазменном ракетном двигателе? За счёт магнитных и электростатических полей. Только вот во втором случае агрегат традиционно именуется ионным, а в первом - именно плазменным.

Концепт из 60-х

Порядка пятидесяти лет тому назад советский физик Алексей Иванович Морозов предложил концепт плазменного ракетного двигателя. Его с успехом испытали в 70-х.

В нём для разделения пресловутых зарядов использовалось радиальное магнитное поле. Получается, что электроны, поддаваясь воздействию силы Лоренца, будто бы по спирали навиваются на силовые линии магнитного поля, которое их «выдёргивает» из плазмы.

Что при этом происходит? Массивные ионы инерционно проходят магнитное поле, набирая ускорение в продольном направлении электрического поля.

Да, данная схема имеет преимущества перед той, которая реализована в плазменно-ионных двигателях, однако есть и минус. Она не даёт возможности добиться большей тяги, что отражается на скорости.

Реален ли путь к звёздам?

На плазменные ракетные двигатели возлагалось немало надежд. Однако какими бы инновационными они ни казались, полёт до далёких небесных тел в рамках одной человеческой жизни обеспечить не могут.

Чтобы придать аппарату достаточный для этого тяговый импульс (а это как минимум 10 000 000 м/сек), нужно создать магнитное поле нереальной на данный момент мощности в 10 000 Тесла. Это возможно лишь с помощью взрывомагнитных генераторов А.Д. Сахарова и прочих современных аппаратов, работающих по тому же принципу.

Но опять-таки, такие мощные поля существуют на протяжении катастрофически малого временного отрезка, измеряемого в микросекундах. Чтобы добиться лучшего результата, приходилось бы утилизировать энергию ядерного взрыва силой в 10 кт. Для справки - последствия такого «явления» выражаются в 4-километрового диаметра облаке высотой в 2 км. А «гриб» и вовсе достигает вверх 7 км.

Так вот, при массе корабля в 100 тонн потребовался бы миллион подобных импульсов. И это лишь для увеличения его скорости на 100 километров в секунду! К тому же только при условии, что заряды не понадобилось бы брать в путь на борт. В вероятности они могли бы быть размещены в космическом пространстве на участке разгона.

Но целый миллион ядерных бомб? Нереально. Это тысячи тонн плутония! А его за всё время существования ядерного оружия произвели чуть больше 300 тонн. Так что плазменный ракетный двигатель с принципом работы, основанным на магнитном разделении зарядов, путь к далёким звёздам не обеспечит.

Холловский двигатель

Это вариант плазменного агрегата, для которого нет ограничений, что налагаются объёмным зарядом. Их отсутствие обеспечивает большую плотность тяги. А это значит, что холловский плазменный двигатель может увеличить скорость космических аппаратов в разы, если сравнивать, например, с ионным агрегатом того же размера.

В основе работы аппарата лежит эффект, который открыл американский физик Эдвин Холл в 1879 году. Он продемонстрировал, как в проводнике с взаимно перпендикулярным магнитным и электрическим полем образуется электроток. Причём в направлении, которое им обоим перпендикулярно.

Проще говоря, в холловском агрегате плазма образуется зарядом между анодом (+) и катодом (-). Действие несложное - разряд отделяет электроны от нейтральных атомов.

Стоит отметить, что на околоземных орбитах сосредоточено порядка 200 спутников с холловскими плазменными двигателями. Для космических аппаратов его мощности хватает вполне. К слову, именно такой агрегат использовался Европейским космическим агентством в целях экономичного разгона SMART-1 - его первой автоматической станции для исследования Луны.

АИПД

Теперь можно поговорить про абляционные импульсные плазменные двигатели (АИПД). Они подходят для применения в малых космических аппаратах, которые имеют неплохой спектр функциональных возможностей. Для его расширения просто необходим высокоэффективный малогабаритный агрегат, способный корректировать и поддерживать орбиту. АИПД - перспективный аппарат с рядом достоинств, к которым можно отнести:

  • Постоянную готовность к работе.
  • Впечатляющий ресурс.
  • Минимальную инерционность.
  • Возможность точно дозировать импульс.
  • Отсутствие импульса последействия.
  • Зависимость тяги от потребляемой мощности.

Импульсные плазменные двигатели данного типа изучены в деталях. Исследователи, конечно, сталкивались и с проблемами. В частности - с поддержанием длительной работы агрегата, препятствием для которого является науглероживание поверхности.

Ещё в рамках одного из исследований, посвящённого изучению АИПД-ИТ, было выяснено, что у этого агрегата основной разряд горит на выходе из канала. А это характерная черта для двигателей намного более внушительной энергии.

Пример установки АИПД - спутник Earth Observer 1. Но претендовать на двигатель коррекции МКА он не может, поскольку потребляет слишком много энергии (60 Вт). К тому же у него низкий суммарный импульс.

Стационарный двигатель

Об этом изобретении тоже стоит сказать пару слов. Стационарный плазменный двигатель имеет особенность в виде малой вырабатываемой мощности и компактности.

Он может использоваться в космической технике как исполнительный орган электрореактивной установки. Или же в рамках научных исследований. С помощью данного изобретения вполне реально моделировать направленные плазменные потоки.

По сути, такой плазменный двигатель - это магнетрон, широко применяемый в промышленности. Он, в свою очередь, представляет собой технологическое устройство, с помощью которого тонкие плёнки материала наносятся на подложку катодным распылением мишени в плазме. Но не нужно путать данное устройство с вакуумными магнетронами. Они выполняют совершенно другую функцию - генерацию СВЧ-колебаний.

С 1995 года стационарные плазменные двигатели задействованы в системах коррекции серии связных геостационарных KA. Потом, начиная с 2003 г., данные устройства стали применять в зарубежных геостационарных спутниках. К началу 2012 года уже 352 двигателя было установлено на аппаратах, которые вышли в открытый космос.

MPD-Thruster

Это ещё один концепт плазменного агрегата. С ним связано немало надежд на космические технологии.

В чём идея? Создаётся заряд плазмы между катодом и анодом, который способствует индуцированию кольцевого магнитного поля. В действие вступает сила Лоренца, при помощи которой поле воздействует на движущиеся заряды тока, вследствие чего определённая их часть отклоняется в продольном направлении. В результате возникает плазменный сгусток, истекающий «вправо». Именно он формирует тяговый толчок.

Данный двигатель осуществляет работу в импульсном режиме, поскольку кратковременные паузы между разрядами необходимы - так копится заряд на электродах.

Чем перспективен MPD-Thruster? Он работает без разделения разноименных зарядов. Так как они в зарядном токе двигаются встречно. Это значит, что и силы Лоренца имеют идентичное направление.

В теории у данного концепта очень выдающиеся показатели. Он может развивать впечатляющую тягу. Но и нюансы тоже есть. Магнитному полю не подвластен «разгон» электрических зарядов. Всё из-за того, что сила Лоренца оказывает воздействие, перпендикулярное их скорости. То есть не изменяет кинетические показатели. MPD-Thruster только немного изменяет направления, по которым следуют заряды - для того чтобы плазма вылетала наружу продольно.

В идеале ток между катодом и анодом должен быть в разы плотнее. Это обязательно для создания тяги. И требует больших затрат электрической энергии. Которая, впрочем, не уступает мощности плазменной струи.

Если удельный импульс составит 1000 километров в секунду, а тяга - 100 кг, то на потребление будут уходить сотни мегаватт. Которые генерировать в космосе практически невозможно. Даже если допустить такую вероятность, корабль с MPD-Thruster, имеющий нетто-массу в 100 тонн, разгонится до отметки в 10 000 км/сек. лишь за 317 лет! И это при запредельно астрономическом стартовом весе, составляющем 2,2 миллиона тонн.

При таких показателях даже невозможно представить расход газа в агрегате, пропускающем электронные заряды. И никаких подсчётов не нужно делать, дабы понять - никакие электроды не способны выдержать столь весомых химических и тепловых нагрузок.

Квантовый аппарат EmDrive

Это изобретение Роджера Шоера из Британии, над которым чуть ли не в открытую смеялось всё международное научное сообщество. Почему? Потому что его квантовый вакуумный плазменный двигатель считался невозможным. Ибо его принцип противоречит законам, которые являются фундаментом физики!

Но, как оказалось, этот плазменный космический двигатель работает, причём весьма успешно! Выяснить данный факт удалось в ходе испытаний NASA.

Агрегат прост по своей конструкции. Тяга создаётся посредством микроволновых колебаний вокруг вакуумного контейнера. А электроэнергия, необходимая для их выработки, добывается из солнечного света. Говоря простым языком - мотор не требует использования топлива и способен работать если не вечно, то как минимум до момента поломки.

Испытатели были в шоке. Двигатель тестировался учёным Гвидо Фетта и командой из NASA Eagleworks, которой руководил Гарольд Уайт - специалисты из космического центра им. Линдона Джонсона. После детального изучения изобретения была опубликована статья, в которой испытатели заверили читателей - аппарат работает и успешно создаёт тягу, пусть это и является необъяснимым противоречием закону о сохранении импульса.

И всё же учёные заявили, что данный агрегат предполагает взаимодействие с так называемым квантовым вакуумом виртуальной плазмы.

Проблема эффективного разделения зарядов

Многие физики пессимистично уверяют - она нерешаема. Есть передовые проекты, в рамках которых разрабатываются инновационные плазменные агрегаты с мощностью в 5 МВт и импульсом в 1000 км/сек., однако их тяга всё равно остаётся слишком маленькой для преодоления больших расстояний.

Разработчики понимают эту проблему и ищут другие подходы. Один из самых перспективных проектов в наше время - это VASIMR. Его удельный импульс равен 50 км/сек., а тяга составляет 6 ньютонов. Вот только VASIMR на самом деле плазменным агрегатом не является. Потому что он вырабатывает высокотемпературную плазму. Она берёт разгон в сопле Лаваля - без использования электроэнергии, только благодаря газодинамическим эффектам. А ускоряется плазма так же, как и газовая струя набирает скорость на выходе из привычного ракетного агрегата.

Заключение

В завершение хотелось бы сказать, что ни один плазменный двигатель для космических кораблей из существующих в наше время не способен доставить ракету даже к ближайшим звёздам. Это касается как экспериментально проверенных аппаратов, так и теоретически просчитанных.

Многие учёные приходят к пессимистичному заключению - разрыв между нашей планетой и звёздами фатально непреодолим. Даже до системы Альфа Центавра, некоторые компоненты которой видны невооружённым глазом с Земли, а ведь расстояние составляет 39,9 триллиона километров. Даже на космическом аппарате, способном передвигаться со скоростью света, преодоление данного расстояния составило бы около 4,2-4,3 лет.

Так что плазменные агрегаты звездолётов - это, скорей, из сферы научной фантастики. Но это ничуть не преуменьшает их значимость! Их используют в качестве маневровых, вспомогательных и корректирующих орбиты двигателей. Поэтому изобретение вполне оправдано.

А вот ядерный импульсный агрегат, который утилизирует энергию взрывов, имеет вероятный потенциал развития. Во всяком случае, как минимум в теории отправка автоматического зонда в ближайшую звёздную систему является возможной.

Современные ракетные двигатели неплохо справляются с задачей выведения техники на орбиту, но совершенно непригодны для длительных космических путешествий. Поэтому уже не первый десяток лет ученые работают над созданием альтернативных космических двигателей, которые могли бы разгонять корабли до рекордных скоростей. Давайте рассмотрим семь основных идей из этой области.

EmDrive

Чтобы двигаться, надо от чего-то оттолкнуться – это правило считается одним из незыблемых столпов физики и космонавтики. От чего конкретно отталкиваться – от земли, воды, воздуха или реактивной струи газа, как в случае ракетных двигателей, – не так важно.

Хорошо известен мысленный эксперимент: представьте, что космонавт вышел в открытый космос, но трос, связывающий его с кораблем, неожиданно порвался и человек начинает медленно улетать прочь. Все, что у него есть, – это ящик с инструментами. Каковы его действия? Правильный ответ: ему нужно кидать инструменты в сторону от корабля. Согласно закону сохранения импульса, человека отбросит от инструмента ровно с той же силой, с какой и инструмент от человека, поэтому он постепенно будет перемещаться по направлению к кораблю. Это и есть реактивная тяга – единственный возможный способ двигаться в пустом космическом пространстве. Правда, EmDrive, как показывают эксперименты, имеет некоторые шансы это незыблемое утверждение опровергнуть.

Создатель этого двигателя – британский инженер Роджер Шаер, основавший собственную компанию Satellite Propulsion Research в 2001 году. Конструкция EmDrive весьма экстравагантна и представляет собой по форме металлическое ведро, запаянное с обоих концов. Внутри этого ведра расположен магнетрон, излучающий электромагнитные волны, – такой же, как в обычной микроволновке. И его оказывается достаточно, чтобы создавать очень маленькую, но вполне заметную тягу.

Сам автор объясняет работу своего двигателя через разность давления электромагнитного излучения в разных концах "ведра" – в узком конце оно меньше, чем в широком. Благодаря этому создается тяга, направленная в сторону узкого конца. Возможность такой работы двигателя не раз оспаривалась, но во всех экспериментах установка Шаера показывает наличие тяги в предполагаемом направлении.

В числе экспериментаторов, опробовавших "ведро" Шаера, такие организации, как NASA, Технический университет Дрездена и Китайская академия наук. Изобретение проверяли в самых разных условиях, в том числе и в вакууме, где оно показало наличие тяги в 20 микроньютонов.

Это очень мало относительно химических реактивных двигателей. Но, учитывая то, что двигатель Шаера может работать сколь угодно долго, так как не нуждается в запасе топлива (работу магнетрона могут обеспечивать солнечные батареи), потенциально он способен разгонять космические корабли до огромных скоростей, измеряемых в процентах от скорости света.

Чтобы полностью доказать работоспособность двигателя, необходимо провести еще множество измерений и избавиться от побочных эффектов, которые могут порождаться, к примеру, внешними магнитными полями. Однако уже выдвигаются и альтернативные возможные объяснения аномальной тяги двигателя Шаера, которая, в общем-то, нарушает привычные законы физики.

К примеру, выдвигаются версии, что двигатель может создавать тягу благодаря взаимодействию с физическим вакуумом, который на квантовом уровне имеет ненулевую энергию и заполнен постоянно рождающимися и исчезающими виртуальными элементарными частицами. Кто в итоге окажется прав – авторы этой теории, сам Шаер или другие скептики, мы узнаем в ближайшем будущем.

Солнечный парус

Как говорилось выше, электромагнитное излучение оказывает давление. Это значит, что теоретически его можно преобразовывать в движение – например, с помощью паруса. Аналогично тому, как корабли прошлых веков ловили в свои паруса ветер, космический корабль будущего ловил бы в свои паруса солнечный или любой другой звездный свет.

Проблема, однако, в том, что давление света крайне мало и уменьшается с увеличением расстояния от источника. Поэтому, чтобы быть эффективным, такой парус должен иметь очень малый вес и очень большую площадь. А это увеличивает риск разрушения всей конструкции при встрече с астероидом или другим объектом.

Попытки строительства и запуска солнечных парусников в космос уже имели место – в 1993 году тестирование солнечного паруса на корабле "Прогресс" провела Россия, а в 2010 году успешные испытания по пути к Венере осуществила Япония. Но еще ни один корабль не использовал парус в качестве основного источника ускорения. Несколько перспективнее в этом отношении выглядит другой проект – электрический парус.

Электрический парус

Солнце излучает не только фотоны, но также и электрически заряженные частицы вещества: электроны, протоны и ионы. Все они формируют так называемый солнечный ветер, ежесекундно уносящий с поверхности светила около одного миллиона тонн вещества.

Солнечный ветер распространяется на миллиарды километров и ответственен за некоторые природные явления на нашей планете: геомагнитные бури и северное сияние. Земля от солнечного ветра защищается с помощью собственного магнитного поля.

Солнечный ветер, как и ветер воздушный, вполне пригоден для путешествий, надо лишь заставить его дуть в паруса. Проект электрического паруса, созданный в 2006 году финским ученым Пеккой Янхуненом, внешне имеет мало общего с солнечным. Этот двигатель состоит из нескольких длинных тонких тросов, похожих на спицы колеса без обода.

Благодаря электронной пушке, излучающей против направления движения, эти тросы приобретают положительный заряженный потенциал. Так как масса электрона примерно в 1800 раз меньше, чем масса протона, то создаваемая электронами тяга не будет играть принципиальной роли. Не важны для такого паруса и электроны солнечного ветра. А вот положительно заряженные частицы – протоны и альфа-излучение – будут отталкиваться от тросов, создавая тем самым реактивную тягу.

Хотя эта тяга будет примерно в 200 раз меньше, чем таковая у солнечного паруса, заинтересовал Европейское космическое агентство. Дело в том, что электрический парус гораздо проще сконструировать, произвести, развернуть и эксплуатировать в космосе. Кроме того, с помощью гравитации парус позволяет также путешествовать к источнику звездного ветра, а не только от него. А так как площадь поверхности такого паруса гораздо меньше, чем у солнечного, то для астероидов и космического мусора он уязвим куда меньше. Возможно, первые экспериментальные корабли на электрическом парусе мы увидим уже в следующие несколько лет.

Ионный двигатель

Поток заряженных частиц вещества, то есть ионов, излучают не только звезды. Ионизированный газ можно создать и искусственно. В обычном состоянии частицы газа электрически нейтральны, но, когда его атомы или молекулы теряют электроны, они превращаются в ионы. В общей своей массе такой газ все еще не имеет электрического заряда, но его отдельные частицы становятся заряженными, а значит, могут двигаться в магнитном поле.

В ионном двигателе инертный газ (обычно используется ксенон) ионизируется с помощью потока высокоэнергетических электронов. Они выбивают электроны из атомов, и те приобретают положительный заряд. Далее получившиеся ионы ускоряются в электростатическом поле до скоростей порядка 200 км/с, что в 50 раз больше, чем скорость истекания газа из химических реактивных двигателей. Тем не менее современные ионные двигатели обладают очень маленькой тягой – около 50–100 миллиньютонов. Такой двигатель не смог бы даже сдвинуться со стола. Но у него есть серьезный плюс.

Большой удельный импульс позволяет значительно сократить расходы топлива в двигателе. Для ионизации газа используется энергия, полученная от солнечных батарей, поэтому ионный двигатель способен работать очень долго – до трех лет без перерыва. За такой срок он успеет разогнать космический аппарат до скоростей, которые химическим двигателям и не снились.

Ионные двигатели уже не раз бороздили просторы Солнечной системы в составе различных миссий, но обычно в качестве вспомогательных, а не основных. Сегодня как о возможной альтернативе ионным двигателям все чаще говорят про двигатели плазменные.

Плазменный двигатель

Если степень ионизации атомов становится высокой (порядка 99%), то такое агрегатное состояние вещества называется плазмой. Достичь состояния плазмы можно лишь при высоких температурах, поэтому в плазменных двигателях ионизированный газ разогревается до нескольких миллионов градусов. Разогрев осуществляется с помощью внешнего источника энергии – солнечных батарей или, что более реально, небольшого ядерного реактора.

Горячая плазма затем выбрасывается через сопло ракеты, создавая тягу в десятки раз большую, чем в ионном двигателе. Одним из примеров плазменного двигателя является проект VASIMR, который развивается еще с 70-х годов прошлого века. В отличие от ионных двигателей, плазменные в космосе еще испытаны не были, но с ними связывают большие надежды. Именно плазменный двигатель VASIMR является одним из основных кандидатов для пилотируемых полетов на Марс.

Термоядерный двигатель

Укротить энергию термоядерного синтеза люди пытаются с середины ХХ века, но пока что сделать это так и не удалось. Тем не менее управляемый термоядерный синтез все равно очень привлекателен, ведь это источник громадной энергии, получаемой из весьма дешевого топлива – изотопов гелия и водорода.

В настоящий момент существует несколько проектов конструкции реактивного двигателя на энергии термоядерного синтеза. Самой перспективной из них считается модель на основе реактора с магнитным удержанием плазмы. Термоядерный реактор в таком двигателе будет представлять собой негерметичную цилиндрическую камеру размером 100–300 метров в длину и 1–3 метра в диаметре. В камеру должно подаваться топливо в виде высокотемпературной плазмы, которая при достаточном давлении вступает в реакцию ядерного синтеза. Располагающиеся вокруг камеры катушки магнитной системы должны удерживать эту плазму от контакта с оборудованием.

Зона термоядерной реакции располагается вдоль оси такого цилиндра. С помощью магнитных полей экстремально горячая плазма проистекает через сопло реактора, создавая огромную тягу, во много раз большую, чем у химических двигателей.

Двигатель на антиматерии

Все окружающее нас вещество состоит из фермионов – элементарных частиц с полуцелым спином. Это, к примеру, кварки, из которых состоят протоны и нейтроны в атомных ядрах, а также электроны. При этом у каждого фермиона есть своя античастица. Для электрона таковой выступает позитрон, для кварка – антикварк.

Античастицы имеют ту же массу и тот же спин, что и их обычные "товарищи", отличаясь знаком всех остальных квантовых параметров. Теоретически античастицы способны составлять антивещество, но до сих пор нигде во Вселенной антивещество зарегистрировано не было. Для фундаментальной науки является большим вопросом, почему его нет.

Но в лабораторных условиях можно получить некоторое количество антивещества. К примеру, недавно был проведен эксперимент по сравнению свойств протонов и антипротонов, которые хранились в магнитной ловушке.

При встрече антивещества и обычного вещества происходит процесс взаимной аннигиляции, сопровождаемый выплеском колоссальной энергии. Так, если взять по килограмму вещества и антивещества, то количество выделенной при их встрече энергии будет сопоставимо со взрывом "Царь-бомбы" – самой мощной водородной бомбы в истории человечества.

Причем значительная часть энергии при этом выделится в виде фотонов электромагнитного излучения. Соответственно, возникает желание использовать эту энергию для космических перемещений путем создания фотонного двигателя, похожего на солнечный парус, только в данном случае свет будет генерироваться внутренним источником.

Но чтобы эффективно использовать излучение в реактивном двигателе, необходимо решить задачу создания "зеркала", которое было бы способно эти фотоны отразить. Ведь кораблю каким-то образом надо оттолкнуться, чтобы создать тягу.

Никакой современный материал попросту не выдержит рожденного в случае подобного взрыва излучения и моментально испарится. В своих фантастических романах братья Стругацкие решили эту проблему путем создания "абсолютного отражателя". В реальной жизни ничего подобного пока сделать не удалось. Эта задача, как и вопросы создания большого количества антивещества и его длительного хранения, – дело физики будущего.

«Метеор-10», выведенный 29 декабря 1971 года на условно-синхронную орбиту (что позволяло проходить над одними и теми же точками земной поверхности через определенные интервалы времени) был самым обычным метеоспутником. Но только на первый взгляд: на его борту кроме обычной системы ориентации стояли еще два экспериментальных двигателя.

Один из них, носящий имя греческого бога западного ветра - «Зефир», проработал всего около часа и дальнейшего развития не получил. А вот второй, названный в честь повелителя ветров - «Эол-1», разработанный группой сотрудников ИАЭ (Института атомной энергии) под руководством Алексея Ивановича Морозова и изготовленный калининградским ОКБ «Факел», положил начало целому космическому направлению - плазменным двигателям.

История плазменных двигателей началась в 1950 году, когда выпускника физфака МГУ Алексея Морозова партком распределил преподавать механику и электротехнику в техникуме заводского поселка Людиново на юго-востоке Калужской области. Причина проста: отец Морозова был репрессирован и никто не принимал во внимание ни его специализацию (квантовая теория поля), ни неоднократные просьбы его научного руководителя - декана физфака Арсения Александровича Соколова - оставить его на кафедре.

Преподавателей физики в те годы довольно часто просили выступать с лекциями об атомной энергии, и Морозов не стал исключением. В один из дней 1953 года он возвращался в Людиново с подобной лекции в деревне Черный поток. «Незадолго до этого я прочитал книжку Гудмана об основах ядерной энергетики. Там была схема ядерной ракеты - газ проходил сквозь активную зону и разогревался. Меня поразило, насколько неэффективна эта конструкция - с одной стороны, атомная энергия, а с другой - это ведь просто тепловая машина! - вспоминает Алексей Иванович. - И пока я шел 12 км по шпалам до Людиново, я вспомнил эксперименты с силой Ампера и катушкой Томсона, которые я показывал студентам в училище, и мне пришла в голову идея - почему бы не разгонять рабочее тело магнитным полем?»

Теоретические выкладки показывали, что это вполне возможно, и Морозов решил провести эксперимент. Изготовив из асбоцемента «кирпичик», он просверлил в нем крест-накрест два отверстия. В одно он с разных сторон вставил два угольных стержня от батареек, а сверху и снизу бруска расположил два полюса мощного электромагнита. В обычном состоянии плазма, образующаяся в процессе горения дуги, с легким шипением вылетала с обеих сторон второго отверстия, но стоило включить электромагнит - и поток стал бить в одну сторону со страшным ревом.

СПД - это кольцевой электромагнит, в зазор которого помещена камера из керамики. В торце камеры расположен анод. Снаружи, возле среза канала двигателя, - два катода-нейтрализатора. Рабочий ксенон подается в камеру и вблизи анода ионизуется. Ионы ускоряются в эл. поле и вылетают из двигателя, создавая реактивную тягу. Их объемный заряд нейтрализуется электронами, подаваемыми с катода-нейтрализатора.

В 1955 году Морозов написал статью «О возможности создания плазменных электрореактивных двигателей», но его научный руководитель, прочитав ее, дал хороший совет: «Такую статью сразу же засекретят. Лучше изменить название на что-нибудь более нейтральное». В результате в ЖЭТФ (Журнал экспериментальной и теоретической физики) статья вышла под названием «Об ускорении плазмы магнитным полем». Рецензировал ее глава отдела плазменных исследований ИАЭ Лев Арцимович. Теория, изложенная в статье Морозова, позднее нашла свое отражение в статье самого Арцимовича о рельсотроне (только у Морозова магнитное поле было постоянное, а у Арцимовича - электродинамическое).

Публикация вызвала среди специалистов большой резонанс, ее даже дважды обсуждали на заседании Американского физического общества.

В 1955 году Морозов защитил диссертацию, а в 1957-м его пригласили на работу в ИАЭ. К концу 1950-х успехи СССР в космосе вдохновили конструкторов замахнуться на несколько крупномасштабных космических проектов. Планировался даже полет к Марсу, и поэтому 2 июля 1959 года Лев Арцимович созвал сотрудников на совещание. Темой обсуждения была возможность построения двигателей для марсианского корабля. Арцимович предложил для такой системы следующие характеристики: тяга около 10 кгс, скорость истечения 100 км/с при мощности двигателя 10 МВт.

Сотрудники ИАЭ предложили несколько проектов: плазменный импульсный двигатель (А.М. Андрианов), магнитно-плазменный аналог сопла Лаваля (А.И. Морозов) и двигатель на основе однощелевого источника ионов, практически такого же, какой применялся для электромагнитного разделения изотопов (Павел Матвеевич Морозов, однофамилец Алексея Ивановича).

Кстати, все эти проекты в том или ином виде позднее были реализованы. Плазменно-эрозионный (вариант импульсного) двигатель Андрианова значительно меньшей мощности был установлен на один из спутников и выведен в космос в 1964 году, а ионный двигатель П.М. Морозова под именем «Зефир» (тоже маломощный) стоял на том самом спутнике «Метеор-10». Эксперименты с магнитным аналогом сопла Лаваля с центральным телом (сами разработчики называли его «коаксиал») велись с 1960 года, но схема оказалась сложной, и построен он был лишь в 1980 году совместными усилиями ИАЭ, Харьковского физико-технического института, ТРИНИТИ и Института физики Белоруссии. Мощность этого монстра составила 10 ГВт!

Однако эти проекты не подходили для марсианской программы по одной простой причине: у конструкторов тогда не было источников питания подходящей мощности. Эта проблема актуальна и сейчас: максимум, на который можно рассчитывать, это десятки киловатт. Нужно было переходить к мелкому масштабу.

Георгий Гродзовский (ЦАГИ) одним из первых стал конструировать маломощные электроракетные двигатели у нас в стране. Начиная с 1959 года его ионные двигатели испытывались в космосе (правда, не на спутниках, а на баллистических ракетах). В 1957 году М.С. Иоффе и Е.Е. Юшманов начали исследования магнитной (так называемой пробочной) ловушки для плазмы. Для заполнения ее горячей плазмой (10 млн. градусов) они использовали ускорение ионов в скрещенных электрических и магнитных полях. Эта работа послужила фундаментом для создания ряда плазменных двигателей.

В 1962 году Алексей Морозов предложил свою конструкцию плазменного двигателя малой мощности, названного СПД (стационарный плазменный двигатель). Принципиально важной особенностью СПД было то, что величина магнитного поля нарастала к срезу канала двигателя - это обеспечивало создание в плазме объемного электрического поля. Вся идея двигателя была построена именно на существовании такого поля.

Простейшие электроракетные двигатели разогревают газ перед истечением электрической дугой (аркджеты) или раскаленной током проволокой - резистоджеты. Встречаются они и в наше время - их конструкция проста, дешева и надежна. Правда, КПД, скорость истечения и тяга невелики. Пионером ионных двигателей считается американец Г. Кауфман. В его схеме используется ионизация дуговым разрядом, а ионы затем разгоняются электростатическим полем в ионно-оптической системе.

«Впервые на возможность существования объемных электрических полей в плазме указал в 1910 году Таунсенд, однако на протяжении 50 лет попытки создать такое поле были неудачны. В то время считали, что, поскольку плазма является проводником - поле в ней создать нельзя. На самом деле создать объемное электрическое поле в плазме без магнитного поля действительно нельзя - за счет свободных электронов происходит ее экранирование. Но в присутствии магнитного поля, которое влияет на движение электронов, объемные электрические поля в плазме могут существовать.

Группа А.И. Морозова начала заниматься СПД в 1962 году. Почти пять лет двигатель существовал в лабораторном варианте - в 1967-м модель еще была оснащена водяным охлаждением. Пора было приступать к летно-космическим испытаниям, но на этом этапе разработчики столкнулись с неожиданной проблемой. Конструкторы космических аппаратов категорически отказывались ставить на борт что-либо электрическое! Директор ИАЭ академик Александров несколько раз встречался с конструкторами различных космических аппаратов, и ему удалось наконец договориться с Иосифьяном, главным конструктором спутников серии «Метеор».

Однако проблемы на этом не закончились. В 1969 году Иосифьян выдал группе разработчиков техническое задание, согласно которому они должны были сделать не сам двигатель, а всю установку, включая систему питания, подачи ксенона и т.п. При этом надо было уложиться в очень жесткие рамки: тяга 2 гс, КПД 30-40%, потребляемая мощность 400 Вт, масса 15 кг, ресурс 100 часов. И все это нужно было сделать за 5 месяцев! Группа Морозова работала буквально днем и ночью, но успела. Изготовление же двигательной установки было поручено калининградскому ОКБ «Факел», директором которого был в то время талантливый конструктор Роальд Снарский. Через несколько дней после запуска «Метеора» начались эксперименты с двигателями. «Эол-1» был установлен на спутник таким образом, что ось его тяги не проходила через центр масс аппарата. При включении двигателя возникал некоторый крутящий момент, который можно было компенсировать системой ориентации, при этом она служила еще и измерителем тяги «Эола».

За экспериментом внимательно следили не только создатели двигателя, но и скептики, коих было достаточно. «Эол-1» должен был проработать всего несколько минут, потом автоматически выключиться (конструкторы боялись, что струя плазмы заблокирует радиосигнал). Двигатель отработал свое и выключился. После проведения радиоконтроля орбиты оказалось, что результаты в точности соответствуют лабораторным данным. Правда, скептики не угомонились и выдвинули гипотезу, что изменение орбиты вызвано обычным истечением газа через открытый клапан. Но это предположение не подтвердилось: после второго включения по команде с Земли двигатель проработал еще 170 часов, подняв орбиту «Метеора-10» на 15 км. ОКБ «Факел» отлично справилось со своей задачей: ресурс был превышен почти вдвое.

В этом году Американское общество по электроракетным двигателям (Electric Rocket Propulsion Society, ERPS) решило отметить столетие исследований в данной области (1906-2006) и учредило специальную награду - медаль «За выдающиеся достижения в области электроракетных двигателей». Алексей Иванович Морозов оказался среди первых шести награжденных. Остальные пять - это Е. Стулингер, Г. Кауфман и Р. Ян (США), Г. Лёб (Германия) и К. Курики (Япония).

В начале 1980-х «Факел» начинает серийно производить двигатели СПД-70 - потомки «Эолов». Первый спутник с этим двигателем, «Гейзер №1», был запущен в 1982-м, а в 1994-м новой моделью СПД-100 оснастили спутник связи «Галс-1». Однако, хотя сообщение об успешном испытании плазменного двигателя «Эол» в 1974 году было совершенно открыто опубликовано в журнале «Космические исследования», зарубежные конструкторы считали СПД лишь интересной теоретической разработкой. Поэтому демонстрация представителям NASA и JPL в 1991 году работающих двигателей «Факела» и сообщение, что подобными оснащены серийные спутники, вызвала у них настоящий шок (американцы в основном пошли по пути разработки ионных двигателей).

Неудивительно, что «Факел» сейчас считается в мире ведущим производителем электроракетных плазменных двигателей. «На каждом третьем российском спутнике стоит наш двигатель, а три из пяти крупнейших западных производителей космических аппаратов покупают у нас СПД, - рассказал директор и генеральный конструктор ОКБ «Факел» Вячеслав Михайлович Мурашко. - Ими, например, оснащены спутники MBSat-1, Intelsat-X-02, Inmarsat-4F1». Посылая свой спутник SMART-1 к Луне, Европейское космическое агентство выбрало для него в качестве двигателей плазменные PPS-1350, совместную разработку французской компании Snecma Moteurs, ОКБ «Факел» и МИРЭА.

Что же ожидает нас в ближайшем будущем? В 1980-х годах группа в МИРЭА разработала двигатель следующего поколения, СПД Атон. Расходимость плазменного пучка в СПД-100 составляет +/- 45 градусов, КПД - 50%, а соответствующие характеристики СПД Атон +/-15 градусов и 65%! Он пока не востребован, как и другой наш двигатель, двухступенчатый СПД Мах с измененной геометрией поля - конструкторы пока обходятся более простыми СПД-100. Дальний космос требует двигателей с масштабами 10-100 кВт или даже МВт. Подобные разработки уже есть - в 1976 году в ИАЭ сделали двигатель мощностью в 30 кВт, да и «Факел» в конце 1980-х разработал СПД-290 мощностью 25 кВт для космического буксира «Геркулес». В любом случае теория таких двигателей построена, поэтому в рамках классической схемы СПД вполне реально довести мощность до 300 кВт. А вот дальше, возможно, придется перейти к другим конструкциям. Например, к двухлинзовому ускорителю на водороде, разработанному в ИАЭ в конце 1970-х. Эта машина имела мощность 5 МВт и скорость истечения 1000 км/с. В любом случае на межпланетных кораблях будут стоять плазменные двигатели.

Обзор подготовлен по материалам: Популярная механика

Оригинал взят у

Плазменные двигатели сегодня применяются в космической промышленности. Однако эти системы в отличие от жидкостных моделей могут использоваться только в вакуумной среде. Их чаще всего применяют в космической промышленности для удержания стационарного спутника на определенных координатах. Недавно российские физики испытали плазменный двигатель для самолетов. Его внедрение будет возможным только после создания генераторов энергии подходящих размеров .

Принцип действия плазменного двигателя

Плазменные системы представляют собой вариант ракетного двигателя, преобразующего топливо в ионизированный газ. В перспективе разработчики рассматривают применение этого оборудования для совершения сверхбыстрых перелетов в космическом пространстве. Первые разработки таких установок велись еще во второй половине XX века .

Двигатель этого типа работает по следующему принципу:

  1. На начальном этапе происходит подача газа в специальную камеру, чья внутренняя поверхность исполняет роль катода, а внешняя - анода.
  2. При подаче высокого напряжения магнитное поле формирует газовый разряд с последующей ионизацией газа, который превращается в плазму.
  3. Плазменная субстанция, повинуясь физическим законам, вырывается из рабочей зоны, создавая реактивную тягу.

Мощность оборудования напрямую зависит от силы воздействия магнитного поля и габаритов устройства. Процесс образования плазмы протекает быстрее и легче в вакуумной среде, чем в условиях атмосферы.

Перспективы новейшей разработки

Устройство нового типа, по утверждению разработчиков, существенно превосходит своих предшественников по мощности. Оно представляет собой 6 анодов, установленных вокруг катода. Под воздействием наносекундных импульсов в устройстве происходят газовые разряды, создающие ионизацию.

Для длительной работы в космосе должны использоваться надежные электроракетные двигатели со скоростью истечения плазмы порядка ста пяти метров в секунду и больше. Плазменные двигатели начали активно разрабатывать еще в середине прошлого века. И сегодня эта работа продолжается.

Начало исследований

В космос наши предки давно хотели полететь. Уже давно активно изучался газ при помощи электрического разряда. Его помещали в стеклянную емкость с электродами. Тогда при снижении давления появлялись лучи, исходящие из катода, что на самом деле, как позже выяснили, было потоком электронов.

А в 1886 году обнаружилось, что, проделывая отверстия в катоде, в обратном направлении от них тянулись другие лучи — ионизированные атомы газов. Но тогда, конечно, не догадывались, что их будут применять для получения

Во времена Советского Союза в лабораториях физико-технического СОАН разрабатывались ионные и плазменные двигатели, чтобы применять эти технологии в аппаратах для полета в космос. Работа началась еще в пятидесятые годы двадцатого столетия. Были открыты два типа устройств:

  • эрозионный двигатель (импульсный);
  • стационарный плазменный двигатель (неимпульсный).

Именно эти два вида и используются по сей день.

Эрозионный и стационарный

Плазменный двигатель, который известен сегодня, функционирует за счет реактивной силы струи плазмы из сопла. Сама плазма образуется посредством электроразряда. Для более простого мотора выбирается импульсный режим (эрозионный плазменный двигатель). В качестве энергоисточника выступает которого составляет 0,5 мкФ, а напряжение — 10 кВ. Его зарядка происходит от трансформатора диодами и резистором.

С помощью таких устройств образуются малые и точные импульсные тяги, которые невозможно получить при работе других типов ракетных моторов. Успешные испытания импульсные плазменные двигатели прошли в 1964 году на космической станции «Зонд-2».

СПД является вариантом ускорителя на протяженной зоне и с замкнутым дрейфом из электронов. Такие устройства способны работать длительный период времени. Два двигателя на ксеноне были впервые запущены в 1972 году на борту советского «Метеора».

Принцип действия: опытный образец

Работа установки производится следующим образом. Напряжением для конденсатора является зазор между коллектором, проводящим ток, и электродами разрядной камеры. При достижении напряжением величины пробоя, в камере двигателя появляется электроразряд. Воздух там нагревается до десяти тысяч единиц и приобретает плазменное состояние. Давление с резкостью увеличивается, и струя плазмы с огромной скоростью вытекает из сопла.

Ракета, которая соединена с двигателем, получает реактивную силу от струи. Для осуществления мягкого вращения ракета прикрепляется шариковым подшипником и благодаря противовесу уравновешивается.

Самым сложным электроузлом является коллектор, подводящий ток. Зазоры между электродами должны быть не более половины миллиметра. Тогда мощность при передаче от конденсатора почти не потеряется, и не будет образовано дополнительное трение, когда ракета начнет вращаться.

Сама ракета и весь плазменный могут иметь разные размеры, однако должно соблюдаться соответствие мощности источника и размера конденсатора. Для расчета базовых узлов и конструкции ракеты удобно использовать схему после вычисления по специальным формулам.

Опытные значения на примере

На примере с заданным напряжением в шесть тысяч Ватт и емкости конденсатора 0,5*10(-6) ф в результате вычислений получится энергия, которая выделяется в камере двигателя, равная 5,4 Дж. А если разница температур составит 10000К, то объем камеры получится равный половине кубического сантиметра.

Тогда элементами электрической схемы станут:

  • трансформатор 220*5000В, имеющий мощность 200 Ватт;
  • резистор проволочный, имеющий мощность 100 Ватт.

Эта модель имеет рабочее напряжение более тысячи вольт, а поэтому необходимо быть очень осторожным при работе с ней и соблюдать все необходимые правила безопасности.

Правила безопасности при проведении опыта

  1. Запуск проводит один человек. Другие могут стоять в отдалении на расстоянии от одного метра от прибора.
  2. Все операции и касания установки руками можно делать только в том случае, если она отключена от питания, выждав не менее минуты после этого. Тогда конденсатор успеет разрядиться.
  3. Источник питания должен быть расположен в корпусе из металла, закрытом со всех сторон. При работе он заземляется посредством медного провода, диаметр которого должен составлять не менее полутора миллиметров.

Плазменные двигатели для настоящих ракет должны иметь мощность в несколько тысяч раз больше! Может, тем, кто сегодня проводит опыты с маленькими образцами, завтра предстоит открывать новые возможности и